
Django Correlation Id Documentation
Release 2.1

Contributors of django-cid

Jun 22, 2020

Contents

1 Django Correlation ID 1
1.1 Supported versions . 2
1.2 Topics . 2

Python Module Index 11

Index 13

i

ii

CHAPTER 1

Django Correlation ID

Logging is important. Anyone who has had a call at 3am to say the site is down knows this. Without quality logging
it is almost impossible to work out what on earth is happening.

The more you log, the harder it is to track down exactly what the effects of a particular request are. Enter Django
Correlation ID. Incoming requests are assigned a unique identifier. This can either happen in your public facing web
server (e.g. nginx) or be applied by Django itself.

This correlation id (also known as request id) is then available through the Django request/response cycle and may
be automatically included in all log messages. That way, you can easily link all log messages that relate to the same
request:

2018-10-01T08:18:39.86+00:00 correlation_id=2433d5d4-27a3-4889-b14b-107a131368a3 Call
→˓to plug from cpoint=1
2018-10-01T08:18:39.90+00:00 correlation_id=72fbd7dd-a0ba-4f92-9ed0-0db358338e86 Call
→˓to state by cpoint=2 with {'state': {'B': 'idle', 'A': 'on_charge'}}
2018-10-01T08:18:39.92+00:00 correlation_id=2433d5d4-27a3-4889-b14b-107a131368a3
→˓Ended rental=7 customer="John Smith" on plug

In this example, we can see that the first and the third log messages are tied to the same request, while the second
message relates to a distinct request.

In addition to these logs, django-cid can include the correlation id:

• in all SQL queries (as a comment);

• in rendered templates;

• as a header in the HTTP response generated by Django;

• and possibly anywhere by using the API of django-cid, for example as an HTTP header on a request to
another internal system of yours, which is especially useful in service-oriented architecture.

Documentation can be found at: https://django-correlation-id.readthedocs.org/

Sources are on GitHub: https://github.com/Polyconseil/django-cid

1

https://travis-ci.org/Polyconseil/django-cid
https://django-correlation-id.readthedocs.org/
https://github.com/Polyconseil/django-cid

Django Correlation Id Documentation, Release 2.1

1.1 Supported versions

We currently support the following versions:

• Django 2.2 with Python >= 3.5.

• Django 3.0 with Python >= 3.6.

Other versions may work but are not supported.

1.2 Topics

1.2.1 Installation and configuration

Installation

At the command line:

$ pip install django-cid

Configuration

You need to add cid.apps.CidAppConfig to your list of installed apps.

INSTALLED_APPS = (
some apps
'cid.apps.CidAppConfig',
some other apps

)

Generation of the correlation id

The correlation id may be generated by django-cid itself or come from upstream through an incoming HTTP
header.

To let django-cid generate an id, set CID_GENERATE to true in the settings:

CID_GENERATE = True

By default, django-cid uses str(uuid.uuid4()) to generate the correlation id but you can customize this
generation to suit your needs in the settings:

CID_GENERATOR = lambda: f'{time.time()}-{random.random()}'

Letting django-cid generate a new correlation id is perfectly acceptable but does suffer one drawback. If you host
your Django application behind another web server such as nginx, then nginx logs won’t contain the correlation id.
django-cid can handle this by extracting a correlation id created in nginx and passed through as a header in the
HTTP request. For this to work, you must enable a middleware in the settings, like this:

2 Chapter 1. Django Correlation ID

Django Correlation Id Documentation, Release 2.1

MIDDLEWARE = (
'cid.middleware.CidMiddleware',
other middlewares

)

The middleware takes care of getting the correlation from the HTTP request header. By default it looks for a header
named X_CORRELATION_ID, but you can change this with the CID_HEADER setting:

CID_HEADER = 'X_MY_CID_HEADER'

Note: Most WSGI implementations sanitize HTTP headers by appending an HTTP_ prefix and replacing - by _.
For example, an incoming X-Correlation-Id header would be available as HTTP_X_CORRELATION_ID in
Django. When using such a WSGI server in front of Django, the latter, sanitized value should be used in the settings.

If a correlation id is provided upstream (e.g. “1234”), it is possible to concatenate it with a newly generated one. The
cid will then look like 1234, 1aa38e4e-89c6-4655-9b8e-38ca349da017. To do so, use the following
settings:

CID_GENERATE = True
CID_CONCATENATE_IDS = True

This is useful when you use a service-oriented architecture and want to be able to follow a request amongst all systems
(by looking at logs that have the first correlation id that was set upstream), and also on a particular system (by looking
at logs that have the id added by the system itself).

Inclusion of the correlation id in the response

By default django-cid sets an HTTP header in the HTTP response with the same name as configured in
CID_HEADER. You may customize it with CID_RESPONSE_HEADER in the settings:

CID_RESPONSE_HEADER = 'X-Something-Completely-Different'

Note: As indicated in the note above, if Django is behind a WSGI server that sanitizes HTTP headers, you need to
customize CID_RESPONSE_HEADER if you want the same header name in the response as in the request.

Nginx sets ``X-Correlation-Id`` but it is sanitized by the WSGI server.
CID_HEADER = 'HTTP_X_CORRELATION_ID'
Don't use the default value (equal to CID_HEADER) for the response header.
CID_RESPONSE_HEADER = 'X-Correlation-Id'

If you don’t want the header to appear in the HTTP response, you must explicitly set CID_RESPONSE_HEADER to
None.

Don't include the header in the HTTP response.
CID_RESPONSE_HEADER = None

Inclusion of the correlation id in logs

The most useful feature of django-cid is to include the correlation id in logs. For this you need to add the cid.
log.CidContextFilter log filter in your log settings, apply it to each logger, and customize the formatter(s) to

1.2. Topics 3

Django Correlation Id Documentation, Release 2.1

include the cid variable.

Here is what it looks like on the the default logging configuration provided by Django’s startproject. Changed
lines are highlighted.

LOGGING = {
'version': 1,
'formatters': {

'verbose': {
'format': '[cid: %(cid)s] %(levelname)s %(asctime)s %(module)s %(message)s

→˓'
},
'simple': {

'format': '[cid: %(cid)s] %(levelname)s %(message)s'
},

},
'handlers': {

'console': {
'level': 'INFO',
'class': 'logging.StreamHandler',
'formatter': 'verbose',

},
},
'filters': {

'correlation': {
'()': 'cid.log.CidContextFilter'

},
},
'loggers': {

'testapp': {
'handlers': ['console'],
'filters': ['correlation'],
'propagate': True,

},
},

}

You can then use your loggers as you normally do, safe in the knowledge that you can tie them all back to the
correlation id.

Inclusion of the correlation id in SQL queries

django-cid can add the correlation id as a comment before the SQL query so that the correlation id appears in your
database logs like this:

/* cid: 1234567-68e8-45fc-85c1-e025e5dffd1e */
SELECT col FROM table

For this you need to change your database backend to one that is provided by django-cid. For example, for sqlite3
you need to use the following:

DATABASES = {
'default': {

'ENGINE': 'cid.backends.sqlite3',
'NAME': location('db.sqlite3'),

}
}

4 Chapter 1. Django Correlation ID

Django Correlation Id Documentation, Release 2.1

django-cid has a wrapper for all backends that are currently supported by Django. Here is the full list:

mysql cid.backends.mysql

oracle cid.backends.oracle

postgis cid.backends.postgis

postgresql cid.backends.postgresql

sqlite3 cid.backends.sqlite3

By default, the correlation id appears as shown in the example above. You may change that by defining a
CID_SQL_COMMENT_TEMPLATE that is a string with a cid format parameter:

CID_SQL_COMMENT_TEMPLATE = 'correlation={cid}'

Inclusion of the correlation id in templates

django-cid provides a template context processor that adds the correlation id to the template context if it is avail-
able. To enable it, you need to add it in the list of TEMPLATE_CONTEXT_PROCESSORS in the settings:

TEMPLATE_CONTEXT_PROCESSORS = (
other template processors
'cid.context_processors.cid_context_processor',

)

It will add a context variable correlation_id if a correlation id is available. You may include it in your template
with the follwing snippet:

{% if correlation_id %}
<meta name="correlation_id" content="{{ correlation_id }}">

{% endif %}

1.2.2 API

cid.locals.generate_new_cid(upstream_cid=None)
Generate a new correlation id, possibly based on the given one.

cid.locals.get_cid()
Return the currently set correlation id (if any).

If no correlation id has been set and CID_GENERATE is enabled in the settings, a new correlation id is set and
returned.

FIXME (dbaty): in version 2, just return getattr(_thread_locals, ‘CID’, None) We want the simplest thing here
and let generate_new_cid do the job.

cid.locals.set_cid(cid)
Set the correlation id for the current request.

1.2.3 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

1.2. Topics 5

Django Correlation Id Documentation, Release 2.1

Types of contributions

Report bugs

Report bugs at https://github.com/Polyconseil/django-cid/issues.

If you are reporting a bug, please include:

• the versions of django-cid, Django and Python;

• any details about your local setup that might be helpful in troubleshooting;

• detailed steps to reproduce the bug.

Write documentation

django-cid could always use more documentation. Don’t hesitate to report typos or grammar correction.

Submit feedback

The best way to send feedback is to file an issue at https://github.com/Polyconseil/django-cid/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome. :)

Get started!

Ready to contribute? Here’s how to set up django-cid for local development.

1. Fork the django-cid repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/django-cid.git

3. Set up a virtual environment and install the dependencies:

$ pip install -e .
$ pip install -r requirement/tests.txt

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. Test your changes locally by running make test.

5. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

6 Chapter 1. Django Correlation ID

https://github.com/Polyconseil/django-cid/issues
https://github.com/Polyconseil/django-cid/issues

Django Correlation Id Documentation, Release 2.1

6. Submit a pull request through the GitHub website.

Sandbox project

The repository has a sandbox directory that contains a Django project that showcases features and may help in
testing and debugging. It does not replace automated tests, though.

Install django-cid and you can run the server:

$ cd sandbox
$./manage.py runserver
[...]
Starting development server at http://127.0.0.1:8000/

The home page at http://127.0.0.1:8000/ is self-documented.

Pull request guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated.

3. The pull request should work for all supported versions of Python and Django. Check https://travis-ci.org/
Polyconseil/django-cid/pull_requests and make sure that the tests pass for all supported Python versions.

1.2.4 Releasing a new version

We use the excellent zest.releaser tool to make new releases. There is a Makefile rule that does a bit more cleaning
beforehand. Just type:

make release

And then follow the instructions.

We try to use semantic versioning, i.e. use MAJOR.MINOR.PATCH version numbers with:

• MAJOR version when we make incompatible API changes;

• MINOR version when we add functionality in a backwards-compatible manner;

• PATCH version when we make backwards-compatible bug fixes.

Although the distinction between MINOR and PATCH has not always been followed, the changelog should be clear
enough.

1.2.5 Credits

Original author: Jonathan Moss <jonathan.moss@snowballone.com.au>.

Current maintainers: the (mostly) nice people at Polyconseil.

Contributors:

• Francis Reyes <francis.reyes@snowballone.com.au>

1.2. Topics 7

http://127.0.0.1:8000/
https://travis-ci.org/Polyconseil/django-cid/pull_requests
https://travis-ci.org/Polyconseil/django-cid/pull_requests
https://zestreleaser.readthedocs.io/en/latest/
https://semver.org/
mailto:jonathan.moss@snowballone.com.au
https://opensource.polyconseil.fr
mailto:francis.reyes@snowballone.com.au

Django Correlation Id Documentation, Release 2.1

1.2.6 History

2.1 (2020-06-22)

• Add support of Django 3.0

• Drop support of Django 2.1.

2.0 (2019-09-27)

• Drop support of Python 3.4.

• Drop support of Django 1.11 and Django 2.0.

• Add CID_GENERATOR setting to allow the customization of the correlation id.

1.3 (2018-10-09)

• bugfix: Fix packaging bug (introduced in version 1.2) that caused two extra packages tests and sandbox to
be installed.

1.2 (2018-10-08)

• bugfix: Fix bug (introduced in version 1.0) that caused the correlation id to be reused across all requests that
were processed by the same thread.

1.1 (2018-10-01)

• Allow to concatenate an upstream correlation id with a locally-generated one, with a new
CID_CONCATENATE_IDS setting.

1.0 (2018-10-01)

Warning: this release includes changes that are not backward compatible. Be sure to read the details below to know
if and how you can migrate.

• Drop support of Django 1.10 and earlier.

• Drop support of Python 2.

• Add support of Django 2. Version 0.x could already be used with Django 2 but tests were not run against it.
They now are.

• Generate cid outside of the middleware when GENERATE_CID is enabled, so that it’s available even if the
middleware is not used.

• Fix support of Django 1.11 in database backends.

• Add PostGIS database backend.

• Add CID_SQL_COMMENT_TEMPLATE to customize how the cid is included as comments in SQL queries.

• Change the app name to be used in INSTALLED_APPS.

Migration from version 0.x: if you had cid in INSTALLED_APPS, replace it by cid.apps.
CidAppConfig. If you did not, add the latter.

8 Chapter 1. Django Correlation ID

Django Correlation Id Documentation, Release 2.1

• Drop compatibility with MIDDLEWARE_CLASSES. You should use the MIDDLEWARE setting. If you already
did, no change is necessary.

If you really must use the old MIDDLEWARE_CLASSES setting, include CidOldStyleMiddleware instead
of CidMiddleware.

0.2.0 (2016-12-06)

• Added support for Django 1.10 middleware (thanks @qbey)

0.1.2 (2016-12-01)

• Made CID repsonse header configurable, and optional (thanks @dbaty)

0.1.0 (2014-08-05)

• First release on PyPI.

1.2. Topics 9

Django Correlation Id Documentation, Release 2.1

10 Chapter 1. Django Correlation ID

Python Module Index

c
cid.locals, 5

11

Django Correlation Id Documentation, Release 2.1

12 Python Module Index

Index

C
cid.locals (module), 5

G
generate_new_cid() (in module cid.locals), 5
get_cid() (in module cid.locals), 5

S
set_cid() (in module cid.locals), 5

13

	Django Correlation ID
	Supported versions
	Topics

	Python Module Index
	Index

